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Explorations Unlimited Round — Semigroups

1. INTRODUCTION

This Power Round is an exploration of numerical semigroups, mathematical structures which appear very
naturally out of answers to simple questions. For example, suppose McDonalds sells Chicken McNuggets in
boxes containing a, b, or ¢ McNuggets; can you say which exact quantities of McNuggets you can and cannot
buy? The same problem is also often stated in terms of stamps or coins of certain values.

You can imagine that solutions to this problem must have numerous practical applications. What is more
surprising is that it also has some interesting applications to more advanced, very abstract mathematics. We
wont be able to discuss that here, but be aware, as you work through these elementary tricks and techniques
for understanding numerical semigroups, that the same tricks and techniques are being used at the cutting
edge of research!

2. THE BAsIicS: DEFINING NUMERICAL SEMIGROUPS

We will develop two different definitions of numerical semigroups, each of which has its intuitive advantages,
and prove that they are in fact the same. We will use Ny to refer to the set of nonnegative integers
0,1,2, ...

Definition 2.1 (Numerical Semigroup). Let aq, ...,a, be as set of integers such that ged(aq,...,a,) = 1.
The numerical semigroup generated by ay, ...,a, is the set {c1a; + ...+ chan|c1,...,cn € No}, which we
sometimes refer to as (a,...,an).

For example, (4,6,9) is the set {0,4,6,8,9,10,12,13,...}, which contains the listed numbers along with all
integers after 12.

Problem 1.

(a) Based on information provided in the definition and example above,
(i) Find all elements of the numerical semigroup (5,7, 11, 16).

(ii) Can this numerical semigroup be generated by a set of fewer than 4 integers? Prove your answer.

(iii) Find all elements of the numerical semigroup (3,7, 8).

(iv) Can this numerical semigroup be exactly generated by a set of fewer than 3 integers? Prove

your answer.

(b) Prove that (aj,...,a,) is “closed under addition”. That is, if 2,y € (a1,...,a,), then z +y €
(a1, ..., an).

(¢) Prove that {(ai,...,a,) contains all but a finite number of the nonnegative integers. (Hint: you may
use without proof the fact that if ged(aq,...,a,) = 1, then there exist possibly negative integers
dy,...,d, such that dya; + ...+ dpa, = 1.)

Definition 2.2 (Numerical Semigroup). A numerical semigroup is any set S C Ny which satisfies all of the
following three properties: (i) S contains 0, (ii) S is closed under additionthat is, for any x,y € S, we have
x+y €S, and (iii) S contains all but a finite number of the nonnegative integers.

In Problem 1, you showed that (a1, ...,a,) is indeed a numerical semigroup by this definition.

Problem 2. Prove that any numerical semigroup S, by this definition, is “generated by” a finite set

{a1,...,a,}. That is, it can be written in the form (ai,...,a,) = {c1a1 + ... + cpanlcy,...,cn € No}
where a1, ..., a, are positive integers with ged(aq,...,a,) = 1.
We say that {ai,...,a,} is a minimal generating set of S if S is generated by {a1,...,a,} and S cannot be

generated by any set of positive integers with fewer than n elements.
Problem 3. Prove that every numerical semigroup S has a unique minimal generating set.

If a is part of the minimal generating set of S, we say that a is a generator of S. This will be important
later.



3. THE GENUS AND FROBENIUS NUMBER OF A NUMERICAL SEMIGROUP

Now that you have two equivalent definitions of numerical semigroups to work with, we can start analyzing
them in more detail. The following definitions are important.

Definition 3.1 (Genus). The genus of a numerical semigroup S is the number of positive integers not
contained in S.

For example, (4,6,9) = {0,4,6,8,9,10,12,13,...} has genus 6, because it does not contain 1, 2, 3, 5, 7, or
11.

Definition 3.2 (Frobenius Number). The Frobenius number of a numerical semigroup S is the largest
integer that S does not contain.

For example, (4,6,9) has Frobenius number 11. Given a numerical semigroup S, let g(S) be its genus
and F'(S) its Frobenius number. We will write g and F for ¢(S) and F(S) respectively when there is no
chance of confusion. (Note that F' may be negative. Specifically, if S contains all the positive integers, then
F(S)=-1)
Problem 4.

(a) Compute the genus and Frobenius number of (5,7,11,16) and (3,7, 8).
(b) Prove that for any numerical semigroup S, we have F(S) < 2¢(S) — 1.

The famous Chicken McNugget Theorem states that if McDonalds sells Chicken McNuggets in boxes of a or
b McNuggets where ged(a, b) = 1, then the largest number of McNuggets one cannot buy is ab — a — b.
Problem 5.

(a) Restate the Chicken McNugget Theorem in terms of the numerical semigroup (a, b).
(b) Prove the Chicken McNugget Theorem. (Hint: consider the grid

1 2 ...a
a+1 a+ 2 ... 2a
b—1Da+1 (b-—1a+2 ... ba

Cross out the numbers of McNuggets that you can buy. What do you notice? Try this with actual
numbers in place of a, b if youre not comfortable.)
(¢) Find, with proof, the genus of (a, b).

4. THE MULTIPLICITY, APERY SET, AND EMBEDDING DIMENSION OF A NUMERICAL SEMIGROUP

Definition 4.1 (Multiplicity of a Numerical Semigroup). The multiplicity of a numerical semigroup S is
the smallest positive integer it contains. For example, (4,6,9) = {0,4,6,8,9,10,12,13,...} has multiplicity
4. We refer to the multiplicity of S by m(.S), or m when there is no possibility of confusion.

Definition 4.2 (Apéry Set). The Apéry set of a numerical semigroup S is the set A(S) = {njn € S,n —
m(S) ¢ S}.
For example, (4,6,9) has Apéry set {0,6,9,15}. Notice that A(S) always contains 0.

Problem 6.

(a) Find the multiplicity and the Apéry set of (5,7,11,16) and (3,7, 8).

(b) Prove that if numerical semigroup S has multiplicity m, then A(S) can be uniquely written in
the form {0,kym + 1, kom + 2,...,kym—1m + m — 1} where kq,...,ky,—1 are positive integers and
kim + i is the smallest element of S which has a remainder of ¢ when divided by m. For example,
A((4,6,9)) ={0,2-4+1,1-442,3-4+ 3}. In the future, we will often refer to k1,...,ky,—1 as the
Apéry coefficients of S.

(¢) Prove that S is generated by (A(S)—{0})U{m}. (Note that this does not mean (A(S)—{0})U{m}
is a minimal generating set of S. In fact, that is not the case for our favorite example (4,6, 9).)

(d) Write, with proof, the genus of S in terms of its Apéry coeflicients.
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(e) Write, with proof, the Frobenius number of S in terms of its Apéry coeflicients.

Problem 7.

(a) Find the multiplicity and the Apéry set of (5,7,11,16) and (3,7, 8).

(b) Prove that if numerical semigroup S has multiplicity m, then A(S) can be uniquely written in
the form {0,kym + 1,kam 4+ 2,... , kpnim + m — 1} where ky,..., k, — 1 are positive integers and
k;m + i is the smallest element of S which has a remainder of ¢ when divided by m. For example,
A({4,6,9)) = {0,244+ 1,14 + 2,34 + 3}. In the future, we will often refer to k1,...,k, — 1 as the
Apéry coefficients of S.

(¢) Prove that S is generated by (A(S)—{0})U{m}. (Note that this does not mean (A(S)—{0})U{m}
is a minimal generating set of S. In fact, that is not the case for our favorite example (4,6, 9).)

(d) Write, with proof, the genus of S in terms of its Apéry coefficients.

(e) Write, with proof, the Frobenius number of S in terms of its Apéry coeflicients.

Note that because S is generated by (A(S) — {0}) U {m}, different numerical semigroups must have different
Apéry sets. Hence we can associate each S with a unique sequence of Apéry coefficients ki, ..., ky,—1. The
natural next question becomes: when can an arbitrary sequence of positive integers ki,...,k,—1 be the
Apéry set of a valid numerical semigroup?

Problem 8.

(a) Suppose numerical semigroup S has Apéry coefficients ki, ..., ky—1. Prove that if 1 <¢,j <m —1
and i + j < m ,then k; + k; > k;1;. Also prove that if 1 < ¢,7 < m —1 and i +j > m, then
ki + kj +1> ki+jm.

(b) Prove that if ki,..., k.1 satisfy the inequalities given in part (a), there is a semigroup S with
ki,...,km_1 as its Apéry coefficients.

(¢) Find, with proof, in terms of g and m, the number of numerical semigroups S of genus g and
multiplicity m satisfying F'(S) < 2m.

(d) Prove that the number of numerical semigroups S of a fixed genus g (but any multiplicity m)
satisfying F'(S) < 2m(S) is a Fibonacci number. (A Fibonacci number is an element of the sequence
{Fp}22, where i = Fy =1and F,, = F,_1 + F,,_2 forn > 3, n € N

Definition 4.3 (Embedding Dimension). The embedding dimension of a numerical semigroup S is the
number of elements in its minimal generating set, which we call e(S) or e when there is no chance of
confusion.

Note that because S is generated by (A(S)—{0})U{m}, we have e(S) < m(S). If S is such that e(S) = m(S),
we say that S is a mazimal embedding dimension numerical semigroup, or MED for short.

Problem 9. Given a sequence of positive integers ki,..., kn,—_1, give, with proof, necessary and sufficient
conditions for k1, ..., k,_1 to be the Apéry coefficients of an MED numerical semigroup.

5. THE SEMIGROUP TREE

The semigroup tree is a systematic way of creating numerical semigroups. We start at level 0 of the tree,
where we put the unique numerical semigroup of genus 0, that is, (1) = Ny. (By convention, Ny has Frobenius
number -1.) If numerical semigroup S appears at level g, it has some number of children which appear at
level g + 1. Each child semigroup is created by removing from S a generator (that is, an element of the
minimal generating set of S) which is larger than the Frobenius number F(S). Hence, we get the only child
of (1) by removing 1, which results in (2, 3) of Frobenius number 1 at level 1. Now 2, 3 are both larger than
1, so (2,3) has two children at level 2 : (3,4,5), which we get by removing 2, and (2,5), which we get by
removing 3. The first few levels of the tree are shown below. Each element is given in the format (minimal
generating set, Frobenius number).
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(3,4,5),2 (2,5),3

_— N\ |

4,5,6,7,),3 (3,5,7),4 (3,4),5 (2,7),5

For convenience, when a semigroup has multiple children, we arrange them from left to right in increasing
order of the size of the generator removed from the “parent”.

Problem 10.

(a) Compute the next level of the tree, following the format given above. (So write each child in terms
of its minimal generating set and give its Frobenius number.)

(b) Prove that every element of the tree is a valid numerical semigroup, and that every numerical
semigroup .S appears exactly once in this tree (at level equal to its genus).

(c¢) Describe in general, with justification, all elements of the rightmost branch of the tree, including
minimal generating set and Frobenius number.

(d) Describe in general, with justification, all elements of the leftmost branch of the tree, including
minimal generating set and Frobenius number.

6. WEIGHTS

Definition 6.1 (Weight). The weight of a numerical semigroup S is the sum of the positive integers not
contained in S.

For example, the weight of (4,6,9) = {0,4,6,8,9,10,12,13,.. .} is1+24+34+5+7+ 11 = 29.

Problem 11.
(a) Find the weight of (5,7,11,16) and (3,7, 8).
(b) Write, with proof, the weight of S in terms of its Apéry coefficients.
(¢) Compute the weight of (a,b) in terms of a and b.

Definition 6.2 (Partition). A partition of a positive integer n is a list of positive integers A\ < Ay < ... < g
such that A1 + o + ...+ X\, = n.

For example, the distinct partitions of 4 are 4,3+1,2+2,2+1+1,and 1+ 141+ 1. Each ); is called a part
of a partition. Given a partition A = A\; + ...+ Ag of n, the Ferrers-Young diagram of A\ consists of a row of
A1 boxes, underneath which is a left-aligned row of Ao boxes, underneath which is a left-aligned row of A3
boxes, and so on. For example, the following figure is the Ferrers-Young diagram of the partition 5+3+2 of 10.

Given a box in a Ferrers-Young diagram, its associated hook is itself together with the boxes directly below
it and the boxes directly to its right. The size or length of the hook is the number of boxes it contains. For
example, the top left box in the Ferrers-Young diagram of 5 4+ 3 + 2 is associated with a hook of length 7.



Definition 6.3 (Hookset). The hookset of a partition A\, denoted H)y, is the set of hook lengths which appear
in the Ferrers-Young diagram of \.

For example, the hookset of 5+ 3+ 2 is {1,2,3,4,6,7}.
Problem 12.

(a) Let p(x,y, z) be the number of partitions of x into at most y parts, each of size at most z. Prove
that the number of numerical semigroups with genus g, multiplicity m, and weight w satisfying
m < F < 2mis exactly p(w — (g—m+1),g—m+1,2m —2 —g).

(b) Prove that given any A, the set Ny \ H) is a numerical semigroup. (Possible hint: think of the
Ferrers-Young diagram of A\ as a partial grid whose edges one may walk along, and consider the walk
starting at the bottom left corner and traversing the lower right edges of the diagram)

(¢) Prove that given any numerical semigroup S, there exists a partition A with Hy = Ny \ S.



